该页全部中文内容仅供20252453-T-424 项目组内部使用

20252453-T-424 项目

4.2.2.1.9 赫尔默特过渡段(Helmert Transition Segment)

赫尔默特过渡段是四次螺旋线的一种特殊情况,其曲率变化率为二次函数,并且各项取决于从拐点开始测量的长度 L。参数值定义为偏角,即方位角 Θ。

段前半部分的各项: 二次项 = L/√2 其余为 0。

段后半部分的各项: 二次项 = -L/√2 线性项 = L/4 常数项 = -1

SegmentStart 是起始方位角,SegmentLength 是段结束时的方位角。

下图展示了应用此概念时使用的通用类和关系。

<a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcCurveSegment.htm'>IfcCurveSegment</a> IfcCurveSegment      LayerAssignment [0:1]      StyledByItem [0:1] 1. Transition [1:1]      UsingCurves [1:?] 2. Placement [1:1] 3. SegmentStart [1:1] 4. SegmentLength [1:1] 5. ParentCurve [1:1] <a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcSecondOrderPolynomialSpiral.htm'>IfcSecondOrderPolynomialSpiral</a> IfcSecondOrderPolynomialSpiral      LayerAssignment [0:1]      StyledByItem [0:1] 1. Position [1:1] QuadraticTerm 2. QuadraticTerm [1:1] LinearTerm 3. LinearTerm [0:1] Constant 4. ConstantTerm [0:1] <a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcCurveSegment.htm'>IfcCurveSegment</a>:ParentCurve1-><a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcSecondOrderPolynomialSpiral.htm'>IfcSecondOrderPolynomialSpiral</a>:IfcSecondOrderPolynomialSpiral0 IfcLengthMeasure_0 IfcLengthMeasure <a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcCurveSegment.htm'>IfcCurveSegment</a>:SegmentStart1->IfcLengthMeasure_0:IfcLengthMeasure0 IfcLengthMeasure_1 IfcLengthMeasure <a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcCurveSegment.htm'>IfcCurveSegment</a>:SegmentLength1->IfcLengthMeasure_1:IfcLengthMeasure0 <a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcSecondOrderPolynomialSpiral.htm'>IfcSecondOrderPolynomialSpiral</a>:QuadraticTerm1->IfcLengthMeasure_0:IfcLengthMeasure0 <a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcSecondOrderPolynomialSpiral.htm'>IfcSecondOrderPolynomialSpiral</a>:LinearTerm1->IfcLengthMeasure_1:IfcLengthMeasure0 <a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcReal.htm'>IfcReal</a> IfcReal <a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcSecondOrderPolynomialSpiral.htm'>IfcSecondOrderPolynomialSpiral</a>:ConstantTerm1-><a href='/IFC/RELEASE/IFC4x3/HTML/lexical/IfcReal.htm'>IfcReal</a>:IfcReal0
Figure 4.2.2.1.9.A